

# **Humus 26**

# Agreva Sustainable Agriculture

Chemwatch: 5680-52

Version No: 2.1
Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements

#### Chemwatch Hazard Alert Code: 4

Issue Date: **27/06/2024**Print Date: **08/07/2024**S.GHS.AUS.EN.E

# SECTION 1 Identification of the substance / mixture and of the company / undertaking

| Product Identifier            |                                                                          |
|-------------------------------|--------------------------------------------------------------------------|
| Product name                  | Humus 26                                                                 |
| Chemical Name                 | Not Applicable                                                           |
| Synonyms                      | Not Available                                                            |
| Proper shipping name          | CORROSIVE LIQUID, N.O.S. (contains tar, brown coal and sodium hydroxide) |
| Chemical formula              | Not Applicable                                                           |
| Other means of identification | Not Available                                                            |

# Relevant identified uses of the substance or mixture and uses advised against

# Details of the manufacturer or supplier of the safety data sheet

| Registered company name | Agreva Sustainable Agriculture           | Sustainable Farming Solutions            |
|-------------------------|------------------------------------------|------------------------------------------|
| Address                 | 160 Pine Ave, Mildura VIC 3500 Australia | 160 Pine Ave, Mildura VIC 3500 Australia |
| Telephone               | +613 9008 6352; +618 93883623            | +613 9008 6352; +618 93883623            |
| Fax                     | Not Available                            | Not Available                            |
| Website                 | http://agreva.com/                       | sustainablefarming.com.au                |
| Email                   | Not Available                            | Not Available                            |

# **Emergency telephone number**

| Association / Organ  | nisation         | CHEMWATCH EMERGENCY RESPONSE (24/7) |
|----------------------|------------------|-------------------------------------|
| Emergency tele       | ephone<br>umbers | +61 1800 951 288                    |
| Other emergency tele | ephone<br>umbers | +61 3 9573 3188                     |

Once connected and if the message is not in your preferred language then please dial 01

# **SECTION 2 Hazards identification**

# Classification of the substance or mixture

| Poisons Schedule              | Not Applicable                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classification <sup>[1]</sup> | Corrosive to Metals Category 1, Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 1A, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Germ Cell Mutagenicity Category 1B, Carcinogenicity Category 1A, Reproductive Toxicity Category 1A, Specific Target Organ Toxicity - Repeated Exposure Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 3 |
| Legend:                       | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI                                                                                                                                                                                                                                                                                         |

# Label elements

Hazard pictogram(s)







Signal word

Danger

# Hazard statement(s)

| • • • • • • • • • • • • • • • • • • • • |                                          |
|-----------------------------------------|------------------------------------------|
| H290                                    | May be corrosive to metals.              |
| H302                                    | Harmful if swallowed.                    |
| H314                                    | Causes severe skin burns and eye damage. |
| H317                                    | May cause an allergic skin reaction.     |
| H340                                    | May cause genetic defects.               |

Humus 26

Issue Date: 27/06/2024 Print Date: 08/07/2024

| H350   | May cause cancer.                                                  |
|--------|--------------------------------------------------------------------|
| H360FD | May damage fertility. May damage the unborn child.                 |
| H373   | May cause damage to organs through prolonged or repeated exposure. |
| H412   | Harmful to aquatic life with long lasting effects.                 |

# Precautionary statement(s) Prevention

| P201 | Obtain special instructions before use.                                          |
|------|----------------------------------------------------------------------------------|
| P260 | Do not breathe mist/vapours/spray.                                               |
| P264 | Wash all exposed external body areas thoroughly after handling.                  |
| P280 | Wear protective gloves, protective clothing, eye protection and face protection. |
| P234 | Keep only in original packaging.                                                 |
| P270 | Do not eat, drink or smoke when using this product.                              |
| P273 | Avoid release to the environment.                                                |
| P272 | Contaminated work clothing should not be allowed out of the workplace.           |

# Precautionary statement(s) Response

| P301+P330+P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. If more than 15 mins from Doctor, INDUCE VOMITING (if conscious).             |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|
| P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].                         |
| P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
| P308+P313      | IF exposed or concerned: Get medical advice/ attention.                                                                          |
| P310           | Immediately call a POISON CENTER/doctor/physician/first aider.                                                                   |
| P302+P352      | IF ON SKIN: Wash with plenty of water.                                                                                           |
| P363           | Wash contaminated clothing before reuse.                                                                                         |
| P333+P313      | If skin irritation or rash occurs: Get medical advice/attention.                                                                 |
| P362+P364      | Take off contaminated clothing and wash it before reuse.                                                                         |
| P390           | Absorb spillage to prevent material damage.                                                                                      |
| P301+P312      | IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.                                              |
| P304+P340      | IF INHALED: Remove person to fresh air and keep comfortable for breathing.                                                       |

# Precautionary statement(s) Storage

P405 Store locked up.

# Precautionary statement(s) Disposal

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

# **SECTION 3 Composition / information on ingredients**

# Substances

See section below for composition of Mixtures

# **Mixtures**

| CAS No      | %[weight]                                                                                                                                                                                   | Name             |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 101316-83-0 | 1-10                                                                                                                                                                                        | tar, brown coal  |
| 1310-73-2   | <1                                                                                                                                                                                          | sodium hydroxide |
| 7732-18-5   | balance                                                                                                                                                                                     | <u>water</u>     |
| Legend:     | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available |                  |

# **SECTION 4 First aid measures**

| Description of first aid measures |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Eye Contact                       | If this product comes in contact with the eyes:  Immediately hold eyelids apart and flush the eye continuously with running water.  Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.  Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.  Transport to hospital or doctor without delay.  Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.                                           |  |
| Skin Contact                      | If skin or hair contact occurs:  Immediately flush body and clothes with large amounts of water, using safety shower if available.  Quickly remove all contaminated clothing, including footwear.  Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre.  Transport to hospital, or doctor.                                                                                                                                                                                                                                         |  |
| Inhalation                        | <ul> <li>If fumes or combustion products are inhaled remove from contaminated area.</li> <li>Lay patient down. Keep warm and rested.</li> <li>Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.</li> <li>Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.</li> <li>Transport to hospital, or doctor.</li> <li>Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema.</li> </ul> |  |

Version No: 2.1 Humus 26

 Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs).
 As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. ▶ Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) Avoid giving milk or oils. Avoid giving alcohol.For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent Ingestion aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. ▶ Transport to hospital or doctor without delay. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

### Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

# **SECTION 5 Firefighting measures**

# Extinguishing media

- ▶ Alcohol stable foam.
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

# Special hazards arising from the substrate or mixture

| Fire Incompatibility    | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advice for firefighters |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fire Fighting           | <ul> <li>Alert Fire Brigade and tell them location and nature of hazard.</li> <li>Wear full body protective clothing with breathing apparatus.</li> <li>Prevent, by any means available, spillage from entering drains or water course.</li> <li>Use fire fighting procedures suitable for surrounding area.</li> <li>Do not approach containers suspected to be hot.</li> <li>Cool fire exposed containers with water spray from a protected location.</li> <li>If safe to do so, remove containers from path of fire.</li> <li>Equipment should be thoroughly decontaminated after use.</li> </ul> |
| Fire/Explosion Hazard   | carbon dioxide (CO2) metal oxides other pyrolysis products typical of burning organic material. May emit corrosive fumes.  Non combustible.  Not considered a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of:                                                                                                                                                                                                                                                                                                                                          |

# **SECTION 6 Accidental release measures**

HAZCHEM

# Personal precautions, protective equipment and emergency procedures

See section 8

# **Environmental precautions**

See section 12

| Methods and material for containment and cleaning up |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Minor Spills                                         | <ul> <li>Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.</li> <li>Check regularly for spills and leaks.</li> <li>Clean up all spills immediately.</li> <li>Avoid breathing vapours and contact with skin and eyes.</li> <li>Control personal contact with the substance, by using protective equipment.</li> <li>Contain and absorb spill with sand, earth, inert material or vermiculite.</li> <li>Wipe up.</li> <li>Place in a suitable, labelled container for waste disposal.</li> </ul>                                                                                                            |  |
| Major Spills                                         | <ul> <li>Clear area of personnel and move upwind.</li> <li>Alert Fire Brigade and tell them location and nature of hazard.</li> <li>Wear full body protective clothing with breathing apparatus.</li> <li>Prevent, by all means available, spillage from entering drains or water courses.</li> <li>Consider evacuation (or protect in place).</li> <li>No smoking, naked lights or ignition sources.</li> <li>Increase ventilation.</li> <li>Stop leak if safe to do so.</li> <li>Water spray or fog may be used to disperse / absorb vapour.</li> <li>Contain or absorb spill with sand, earth or vermiculite.</li> <li>Collect recoverable product into labelled containers for recycling.</li> </ul> |  |

Collect solid residues and seal in labelled drums for disposal.

Issue Date: 27/06/2024

Print Date: 08/07/2024

Chemwatch: 5680-52 Page 4 of 14 Issue Date: 27/06/2024 Version No. 2.1 Print Date: 08/07/2024 Humus 26

Wash area and prevent runoff into drains.

- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

#### SECTION 7 Handling and storage

#### Precautions for safe handling

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin
- · Electrostatic discharge may be generated during pumping this may result in fire.
- Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- · Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- Avoid splash filling.
- Do NOT use compressed air for filling discharging or handling operations.
- Wait 2 minutes after tank filling (for tanks such as those on
- road tanker vehicles) before opening hatches or manholes.
- Wait 30 minutes after tank filling (for large storage tanks) before opening hatches or manholes. Even with proper
- grounding and bonding, this material can still accumulate an
- electrostatic charge. If sufficient charge is allowed to

- accumulate, electrostatic discharge and ignition of flammable air-vapour mixtures can occur. Be aware of handling
- operations that may give rise to additional hazards that result
- from the accumulation of static charges. These include but are
- not limited to pumping (especially turbulent flow), mixing,
- filtering, splash filling, cleaning and filling of tanks and
- containers, sampling, switch loading, gauging, vacuum truck operations, and mechanical movements. These activities may

- lead to static discharge e.g. spark formation. Restrict line
- velocity during pumping in order to avoid generation of

- electrostatic discharge (= 1 m/s until fill pipe submerged to twice its diameter, then = 7 m/s). Avoid splash filling.

  Do NOT use compressed air for filling, discharging, or handling operations
  - Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Avoid contact with moisture.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Store in original containers.

Other information

Safe handling

- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
   DO NOT store near acids, or oxidising agents
- No smoking, naked lights, heat or ignition sources.

# Conditions for safe storage, including any incompatibilities

- Lined metal can, lined metal pail/ can.
- Plastic pail
- Polvliner drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type. Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
- Removable head packaging;
  - Cans with friction closures and
  - I low pressure tubes and cartridges

may be used.

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

# Storage incompatibility

Suitable container

- Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds.
- Avoid contact with copper, aluminium and their alloys.

# SECTION 8 Exposure controls / personal protection

Chemwatch: 5680-52

Humus 26

Page 5 of 14 Version No: 2.1

#### Occupational Exposure Limits (OEL)

# INGREDIENT DATA

| Source                       | Ingredient       | Material name    | TWA           | STEL          | Peak    | Notes         |
|------------------------------|------------------|------------------|---------------|---------------|---------|---------------|
| Australia Exposure Standards | sodium hydroxide | Sodium hydroxide | Not Available | Not Available | 2 mg/m3 | Not Available |

| Emergency Limits |               |               |               |
|------------------|---------------|---------------|---------------|
| Ingredient       | TEEL-1        | TEEL-2        | TEEL-3        |
| sodium hydroxide | Not Available | Not Available | Not Available |

|                  | · · · · · · · · · · · · · · · · · · · | <u>'</u>      |
|------------------|---------------------------------------|---------------|
| Ingredient       | Original IDLH                         | Revised IDLH  |
| tar, brown coal  | Not Available                         | Not Available |
| sodium hydroxide | 10 mg/m3                              | Not Available |
| water            | Not Available                         | Not Available |

### Occupational Exposure Banding

| Ingredient      | Occupational Exposure Band Rating                                                                                                                                                                                                                                                                                                                                 | Occupational Exposure Band Limit |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| tar, brown coal | E ≤ 0.1 ppm                                                                                                                                                                                                                                                                                                                                                       |                                  |  |
| Notes:          | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health |                                  |  |

#### Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

## Appropriate engineering controls

- · Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- Open-vessel systems are prohibited.
- ▶ Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.

# Individual protection measures, such as personal













# protective equipment

Eye and face protection

- ▶ Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure
- Chemical goggles. Whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted. [AS/NZS 1337.1, EN166 or national equivalent]
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face
- Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

# Skin protection

# Hands/feet protection

# See Hand protection below

Elbow length PVC gloves

When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

# NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Issue Date: 27/06/2024

Print Date: 08/07/2024

Issue Date: 27/06/2024 Version No. 2.1 Print Date: 08/07/2024 Humus 26

> Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact,

- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

# **Body protection**

#### See Other protection below

# Other protection

## ▶ Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent]

- Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filtertype respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent]
- Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely.
- Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
- Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Overalls.
- ▶ PVC Apron.
- ▶ PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

# Recommended material(s)

# **GLOVE SELECTION INDEX**

Glove selection is based on a modified presentation of the:

# "Forsberg Clothing Performance Index"

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

Humus 26

| Material          | СРІ |
|-------------------|-----|
| BUTYL             | A   |
| NEOPRENE          | A   |
| NAT+NEOPR+NITRILE | C   |
| NATURAL RUBBER    | С   |
| NATURAL+NEOPRENE  | С   |
| NEOPRENE/NATURAL  | C   |
| NITRILE           | С   |
| NITRILE+PVC       | С   |
| PE                | С   |
| PE/EVAL/PE        | С   |
| PVA               | С   |
| PVC               | С   |
| SARANEX-23        | C   |
| SARANEX-23 2-PLY  | С   |
| TEFLON            | С   |
| VITON             | C   |
| VITON/CHLOROBUTYL | C   |

\* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

# Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

| Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face<br>Respirator | Full-Face<br>Respirator |
|------------------------------------|--------------------------------------------------------------------|-------------------------|-------------------------|
| up to 10                           | 1000                                                               | AK-AUS /<br>Class1 P2   | -                       |
| up to 50                           | 1000                                                               | -                       | AK-AUS /<br>Class 1 P2  |
| up to 50                           | 5000                                                               | Airline *               | -                       |
| up to 100                          | 5000                                                               | -                       | AK-2 P2                 |
| up to 100                          | 10000                                                              | -                       | AK-3 P2                 |
| 100+                               |                                                                    |                         | Airline**               |

- Continuous Flow \*\* Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)
- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

Issue Date: 27/06/2024 Print Date: 08/07/2024 Humus 26

Oxidising properties

pH as a solution (1%)

Gas group

VOC g/L

Surface Tension (dyn/cm or

Volatile Component (%vol)

C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

\* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Not Applicable

Not Available

Not Available

Not Available

Not Available

Miscible

▶ Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used 76ak-p()

Not Available

Not Available

Not Available

Not Available

Not Available Not Available

# **SECTION 9 Physical and chemical properties**

#### Information on basic physical and chemical properties Appearance Dark brown to black colored liquid; mixes with water Physical state Relative density (Water = 1) 1.17 Partition coefficient n-octanol Odour Not Available Not Available Auto-ignition temperature Odour threshold Not Available Not Available (°C) Decomposition pH (as supplied) 9.5-12 Not Available temperature (°C) Melting point / freezing point Not Available Viscosity (cSt) Not Available (°C) Initial boiling point and Not Available Molecular weight (g/mol) Not Available boiling range (°C) Flash point (°C) Not Applicable Taste Not Available **Evaporation rate Explosive properties** Not Available Not Available

# Vapour density (Air = 1) **SECTION 10 Stability and reactivity**

Vapour pressure (kPa)

Solubility in water

Upper Explosive Limit (%)

Lower Explosive Limit (%)

Flammability

| Reactivity                         | See section 7                                                                                                                                                    |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical stability                 | <ul> <li>Unstable in the presence of incompatible materials.</li> <li>Product is considered stable.</li> <li>Hazardous polymerisation will not occur.</li> </ul> |
| Possibility of hazardous reactions | See section 7                                                                                                                                                    |
| Conditions to avoid                | See section 7                                                                                                                                                    |
| Incompatible materials             | See section 7                                                                                                                                                    |
| Hazardous decomposition products   | See section 5                                                                                                                                                    |

# **SECTION 11 Toxicological information**

Inhaled

Skin Contact

Eye

Chronic

Information on toxicological effects

# Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.

Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Ingestion

Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

The material can produce severe chemical burns following direct contact with the skin. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

If applied to the eyes, this material causes severe eye damage.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. There is sufficient evidence to suggest that this material directly causes cancer in humans.

Based on experiments and other information, there is ample evidence to presume that exposure to this material can cause genetic defects that can be inherited.

Chemwatch: 5680-52

Humus 26

Page 8 of 14 Issue Date: 27/06/2024 Version No: 2.1 Print Date: 08/07/2024

> This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects

Ample evidence exists that this material directly causes reduced fertility

Ample evidence exists that developmental disorders are directly caused by human exposure to the material.

Ample evidence exists from experimentation that reduced human fertility is directly caused by exposure to the material.

Ample evidence exists, from results in experimentation, that developmental disorders are directly caused by human exposure to the material. Based on experience with animal studies, exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother.

|                  | TOVIOTY                                                                               | IDDITATION                                                                        |  |
|------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Humus 26         | TOXICITY                                                                              | IRRITATION                                                                        |  |
|                  | Not Available                                                                         | Not Available                                                                     |  |
| 4 1              | TOXICITY                                                                              | IRRITATION                                                                        |  |
| tar, brown coal  | Not Available                                                                         | Not Available                                                                     |  |
|                  | TOXICITY                                                                              | IRRITATION                                                                        |  |
|                  | Dermal (rabbit) LD50: 1350 mg/kg <sup>[2]</sup>                                       | Eye (rabbit): 0.05 mg/24h SEVERE                                                  |  |
|                  | Oral (Rabbit) LD50; 325 mg/kg <sup>[1]</sup>                                          | Eye (rabbit):1 mg/24h SEVERE                                                      |  |
| sodium hydroxide |                                                                                       | Eye (rabbit):1 mg/30s rinsed-SEVERE                                               |  |
|                  |                                                                                       | Eye: adverse effect observed (irritating) <sup>[1]</sup>                          |  |
|                  |                                                                                       | Skin (rabbit): 500 mg/24h SEVERE                                                  |  |
|                  |                                                                                       | Skin: adverse effect observed (corrosive) <sup>[1]</sup>                          |  |
|                  | TOXICITY                                                                              | IRRITATION                                                                        |  |
| water            | Oral (Rat) LD50: >90000 mg/kg <sup>[2]</sup>                                          | Not Available                                                                     |  |
| Legend:          | Value obtained from Europe ECHA Registered Subs                                       | stances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherv |  |
| ū                | specified data extracted from RTECS - Register of Toxic Effect of chemical Substances |                                                                                   |  |

### TAR, BROWN COAL

Side effects include skin irritation, sun sensitivity, allergic reactions, and skin discoloration.

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested

The production of creosotes and coal tars stems from the incomplete combustion of carbon-containing materials. Physically, they are usually viscous liquids or semisolids that are black or dark brown with a naphthalene-like odour. They have an oily liquid consistency and range in colour from yellowish-dark green to brown and largely contain a mixture of polycyclic aromatic hydrocarbons (PAHs) including phenol. It is likely that their toxicity is due largely to the major individual components, phenols, PAHs and others.

For "distillates of coal tar" or 'creosotes Critical Health Effects

The critical health effects for risk characterisation are systemic long-term effects including carcinogenicity, mutagenicity, reproductive toxicity and developmental toxicity. The chemicals are also considered to be phototoxic and have the potential to cause skin irritation and sensitisation and mild respiratory irritation.

**Toxicokinetics** 

Limited data are available. Toxicological data indicate that the chemicals are absorbed via all routes of exposure (WHO, 2004). The PAHs can be absorbed through the respiratory tract, the gastrointestinal tract and the skin. Following absorption, PAHs are widely distributed throughout the body to all internal organs. During metabolism, the parent compounds are converted via intermediate epoxides to phenols, diols, and tetrols, which then conjugate with sulfate or glucuronic acids or with glutathione (IPCS, 1998).

Observation in humans

Evidence of skin, eye and respiratory irritation in humans following exposure to creosote have been reported (ATSDR, 2002). Skin irritation, eczema and folliculitis were noted when an industrial health survey was conducted of workers exposed to coal tar creosote (ATSDR, 2002). In these workers, the effects of dermal irritation were reported as being exacerbated by exposure to ultraviolet (UV) light. The phototoxic effects of several PAHs were compared by treating human fibroblasts with these PAHs and then irradiating them with ultraviolet light (<400 nm). A good correlation was found between the phototoxic effects and known carcinogenic potential (IPCS, 1998). Studies involving workers included reported instances of irritation to superficial ocular tissues after being exposed to coal tar creosote; this was exacerbated after exposure to the sun (ATSDR, 2002).

Skin Sensitisation

Limited data are available. Distillates, coal tar, naphthalene oils (CAS No. 84650-04-4), gave positive results in a single local lymph node assay (LLNA). Creosote (CAS No. 8001-58-9) was found to induce dermal sensitisation when tested according to OECD TG 406 in a guinea pig maximisation test (GPMT) using Dunkin-Hartley guinea pigs (REACH). Overall, the available data support classification for all the chemicals in this group

An LLNA study (OECD TG 429) was conducted in female BALB/c mice (n = 5/concentration) with coal tar distillates, naphthalene oils (CAS No. 84650-04-4), using a 40 % dimethylacetamide, 30 % acetone and 30 % ethanol (DAE 433) mixture as a vehicle. The test concentrations of 0.3, 3 and 30 % had a simulation index (SI) of 1.36, 1.41 and 5.88 respectively. The positive control, dinitrochlorobenzene at a 0.5 % concentration, gave an SI of 11.55. The three-fold increase in lymphocyte proliferation (EC3 value) could not be calculated (REACHc). In a GPMT (OECD TG 406) with creosote (CAS No. 8001-58-9), positive skin reactions were reported in 17/19 animals after 24 hours (average Draize score = 1.2) and 6/19 animals after 48 hours (average Draize score = 0.4) (REACHb). Repeated Dose Toxicity

Oral

Limited data are available regarding the non-cancer effects of the chemicals.

The chemicals in this group are not considered to cause serious damage to health through repeated oral exposure based on the no observed adverse effect levels (NOAELs) (generally >100 mg/kg bw/day) reported for the following 2-4-ring PAHs: -naphthalene:

- -acenaphthene:
- -fluorene;
- -fluoranthene; and

Effects on the liver, kidney and blood were observed at higher doses (IPCS, 1998).

Dermal

Page 9 of 14 Issue Date: 27/06/2024 Version No: 2.1 Print Date: 08/07/2024

Humus 26

Limited data are available regarding the non-cancer effects of the chemicals.

Limited data are available regarding the non-cancer effect of the chemicals.

Male Fischer 344 rats were exposed to high-boiling coal liquid (heavy distillate) via inhalation (700 mg/m3) for six hours/day, five days/week for six weeks. A 20 % increase in arterial blood pressure and heart rate was reported, although it was not determined if the response was exposure-related. The growth rate of the rats was reported as suppressed during the time of the study (ATSDR, 2002).

Repeated dose toxicity (inhalation) was determined by exposing 20 (sex/dose) Charles River (CD) rats to CAS No. 90640-86-1 (as distilled coal tar) (5.4, 49 and 106 mg/m3) for six hours/day, five days/week for 13 weeks. A decrease in body weight was recorded as significant in both sexes in the mid- and high-range dose groups during the sixth week of exposure. A treatment related increase in weight was reported in the lung/trachea/body weight ratio and was consistent with macroscopic observation of grey discolouration of the lungs and microscopic observation of macrophages in the lungs. Increases in liver weight (mid-dose group) and liver/body weight ratio (mid- and high-dose group) were recorded in male animals. Increases in the liver weight (high-dose group), liver/body weight ratio and liver/brain weight ratio (mid- and high-dose group) were recorded in the female animals. Reversible hypertrophy of the thyroid follicular cells reported as related to a reduction of colloid was reported at all dose levels. A NOAEL of 5.4 mg/m3 was reported for this study (REACHb).

Observation in humans

Mild respiratory effects, including reduced lung function, have been reported in workers using coal tar creosote in wood preservative plants. Genotoxicity

Several of the chemicals (CAS No. 73665-18-6, CAS No. 84650-03-3 and CAS No. 84650-04-4) are classified as hazardous—Category 2 mutagenic substance—with the risk phrase 'May cause heritable genetic damage (T; R46) in the HSIS (Safe Work Australia). The available data support this classification for all the chemicals in this group, although the associated annotations will differ for each chemical (refer Recommendation section).

For the chemicals CAS No. 84650-03-3 and CAS No. 84650-04-4, in vitro data using the reverse mutation assays with various strains of Salmonella typhimurium were negative for genotoxicity (REACH). No compositional information was available but these chemicals are lower boiling point distillate fractions that are likely to contain aromatics, tar bases and acids (see Grouping rationale). The classification of these chemicals is dependent on benzene concentration (refer to Existing Worker Health and Safety Controls: Hazard Classification section). Benzene is classified as hazardous—Category 2 mutagenic substance—with the risk phrase 'May cause heritable genetic damage (T; R46) in the HSIS (Safe Work Australia).

The chemical, CAS No. 90640-86-1 was positive in a reverse mutation assay in Salmonella typhimurium strains TA98 and TA1537 in the presence of metabolic activation. Weakly positive responses were also observed in strains TA100 and TA102. The sample was reported to contain >50 ppm B[a]P.

Various creosotes have been reported to produce a positive response in vitro. Almost all creosotes tested showed mutagenic activity after metabolic activation (S9 mix) in the conventional Ames assay with S. typhimurium TA98. Positive results were also obtained with several other S. typhimurium TA or YG strains, or with the mouse lymphoma cell assay and the sister chromatid exchange test with Chinese hamster ovary cells. A common feature in the tests with Salmonella strains TA98 and TA100 (plus S9 mix) was that the mutagenicity appeared in the distillation fractions having the highest boiling point ranges (>290 °C) and high concentrations of known mutagenic PAHs (WHO, 2004). A creosote reported to contain <50 ppm B[a]P was tested according to OECD 476 (in vitro mouse lymphoma gene mutation assay). The chemical showed a weak positive mutagenic activity in the presence of metabolic activation. A creosote containing <50 ppm B[a]P did not induce chromosome aberrations in human lymphocytes cultures in the presence and absence of metabolic activation (REACHb). DNA adduct formation in mammalian systems has been observed following exposure to creosote, with adducts in rats (liver) and mice (lungs, forestomach and spleen) (ATSDR, 2002). A commercially available coal tar creosote was positive in an in vivo mouse micronucleus assay. The CD-1 male mice received two intraperitoneal (i.p.)injections (with an interval of 24 hours) of creosote (in olive oil) at concentrations of 92.5, 185, or 370 mg/kg bw. Dose-dependent increases in the frequency of micronucleated polychromatic erythrocytes in bone marrow were observed. A single intraperitoneal treatment of 370 mg/kg body weight also induced micronuclei (WHO, 2004). A creosote reported to contain <50 ppm B[a]P was reported to be negative in an in vivo mouse micronucleus test (REACHb). Genotoxicity of PAHs

The chemicals have the potential to contain fluoranthene and chrysene as well as higher molecular weight PAHs that are genotoxic including benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, and indeno[1,2,3cd]pyrene (IARC, 2010; IARC, 2012; NICNAS). Positive effects were seen in most assays for the mutagenicity of B[a]P, including induced sperm abnormalities in mice (IPCS, 1998). Data for B[a]P are considered sufficient to indicate that the chemicals could induce mutations in germ cells.

Carcinogenicity

The chemicals are classified as hazardous—Category 2 carcinogenic substances—with the risk phrase 'May cause cancer (T; R45) in the HSIS (Safe Work Australia). The available data support this classification for all the chemicals in this group, although the associated notes will differ for each chemical (refer Recommendation section).

Several creosote or cresosote oils produced skin tumours in mice following dermal application. Lung tumours were also reported in one study. Worker exposure to creosotes has been associated with an increased risk of testicular cancer. The only available cohort study was considered limited by its small size (IARC, 1985; IARC, 2010).

The International Agency for Research on Cancer (IARC) concluded that creosotes are probably carcinogenic to humans (Group 2A). This

was based on limited evidence of carcinogenicity in humans and sufficient evidence in experimental animals (IARC, 2010).

There are a number of potential carcinogenic components of the chemicals. There is sufficient evidence in experimental animals for the carcinogenicity of four membered PAHs such as chrysene and pyrene and also several higher molecular weight PAHs (IARC, 2010; IARC 2012)

The classification of a number of chemicals in this group is subject to note M (refer to Existing Worker Health and Safety Controls: Hazard Classification section), which exempts classification if it can be shown that the substance contains <0.005 % w/w B[a]P (50 ppm). No data have been identified regarding the rationale for note M. However, in the absence of detailed composition details, this is considered reasonable as, whilst several carcinogenic PAHs might be present as constituents in these chemicals at levels similar or higher than B[a]P, the cut-off concentration for mixtures containing category 1 carcinogens is 0.1 % (several orders of magnitude higher than 0.005 %). The classification of some of the lower boiling point distillate fractions are subject to note J (refer to Existing Worker Health and Safety Controls: Hazard Classification section), which exempts classification if it can be shown that the substance contains <0.1% w/w benzene. Benzene is classified as hazardous, a Category 1 carcinogenic substance, with the risk phrase 'May cause cancer (T; R45) in the HSIS (Safe Work Australia).

Reproductive and Developmental Toxicity

Overall, the reproductive and developmental data are limited for chemicals in the group, although the data for higher molecular weight PAHs are considered sufficient for classification for all chemicals except the lower boiling point distillate fractions (CAS Nos. 84650-03-3 and 84650-04-4). The associated notes will differ for each chemical.

In a two-generation study, the chemical, distillates, coal tar, heavy oils (CAS No. 90640-86-1), was administered via oral gavage (25, 75 and 150 mg/kg bw/day) to male and female CD rats (26/sex/dose). At all dose levels, decrease in body weight during the pre-mating period was observed and recorded as dose-related. Decreased fertility and pregnancy indices in the F1 female parental rats were recorded at all dose levels (25, 75, 150 mg/kg bw/d). There was a significant dose-related reduction in the number of live F1 offspring at doses 375 mg/kg bw/d. A dose-related decrease in growth of the F1 offspring was reported, starting at 25 mg/kg bw/d. Although the NOAEL is reported as 25 mg/kg bw/d (REACHb), reproductive effects were indicated at all doses.

In a developmental toxicity study, the chemical, distillates, coal tar, heavy oils (CAS No. 90640-86-1), was administered via oral gavage (25, 50 and 175 mg/kg bw/day) to 30 (per dose) mated female CD rats, during gestation day(GD) 6-15. Increases in post implantation loss resorptions and a reduction in live foetuses were observed in 175 mg/kg bw/day group. Developmental toxicity was not observed at doses of 50 mg/kg bw/day or lower. Malformations were observed in all dose groups, although the incidences were significantly higher in the mid- and high-dose groups. These were historically common malformations and not considered by the study authors to be treatment related. There were no adverse effects observed for late intrauterine development of live foetuses in any dose group. The NOAEL for maternal toxicity was reported as 50 mg/kg bw/d and for teratogenicity 175 mg/kg bw/d (REACHb).

Coal tar creosote was tested for oestrogenic activity using an assay in ovariectomised (OVX) ICR and DBA/2 mice. The animals received oral doses (by gavage) once every 24 hours for four days and were euthanised on day five. No increase in absolute or relative uterine wet weight or vaginal cornification was observed.

A decrease in mean foetal body weight was observed in the offspring of female ICR mice dosed by gavage with 400 mg/kg petroleum creosote in DMSO on GD 5-9. Moderate maternal toxicity in the form of reduced body weight gain was observed for both creosote-treated and vehicle-control mice compared with untreated controls. (ATSDR, 2002; WHO, 2004)

Humus 26

Page 10 of 14 Issue Date: 27/06/2024 Print Date: 08/07/2024 Version No: 2.1

> Embryotoxicity of petroleum creosote has been studied in a mouse preimplantation embryo culture system. The ICR mice embryos (n = 15) collected on day 3.5 of gestation (blastocyst stage) were exposed for 1 hour to different concentrations of creosote in a serum-supplemented culture medium with and without rodent hepatic S9 microsomal fractions, and subsequently cultured in a control medium for 24-72 hours. Embryonic viability was inversely related to petroleum creosote concentration (WHO, 2004).

An experiment with pregnant pigs, held on wooden platforms treated with coal tar creosote, resulted in adverse developmental effects. A significant number (24/41) of piglets died at birth and 11 piglets died by day three post farrowing.

The chemicals may contain several higher molecular weight PAHs that are embryotoxic. B[a]P also had adverse effects on female fertility, reproduction and postnatal development (IPCS, 1998).

The chemicals are recommended for classification and labelling under the current approved criteria and adopted GHS as below. This assessment does not consider classification of physical and environmental hazards.

The classification criteria for mixtures should be applied to known components based on their concentrations in these UVCB substances. In the absence of detailed composition data the following notes should be applied. Information on notes

A note should be added for the acute toxicity classification. The acute toxicity R23 classification need not apply if it can be shown that the chemical contains <8 % pyrene; however, R20 classification applies if the chemicals contains >1 % pyrene

The current HSIS classification for carcinogenicity of the chemicals indicated Note H. Note H is no longer considered relevant for these chemicals as the acute, systemic and local effects of the chemicals have been evaluated.

The classification for CAS Nos. 61789-28-4, 65996-91-0, 65996-92-1, 68188-48-7, 73665-18-6, 84650-04-4 and 91995-51-6 are subject to Note M (refer to Existing Worker Health and Safety Controls: Hazard Classification section), which exempts classification if it can be shown that the substance contains <0.005 % w/w B[a]P (50 ppm). Given that Note M for carcinogenicity is considered appropriate for these chemicals and the cut-off concentration for mixtures is similar for the mutagenicity, reproductive/developmental and carcinogenicity classifications, a similar note for the proposed genotoxicity and reproductive/developmental classification is considered appropriate. Therefore, Note M should be slightly modified as follows:

'Note M: The classification (with the exception of classification for acute toxicity and sensitisation) need not apply if it can be shown that the substance contains less than 0.005% w/w benzo[a]pyrene (EINECS no. 200-028-5). This note only applies to certain complex coal-derived substances in Annex I.'

The classification for CAS Nos. 84650-03-3, 84650-04-4 and 73665-18-6 are subject to Note J (refer to Existing Worker Health and Safety Controls: Hazard Classification section), which exempts classification if it can be shown that the substance contains <0.1% w/w benzene These chemicals are described as including lower boiling point distillation fractions and therefore Note J is considered appropriate. Based on the description of CAS No. 65996-92-1 ('The distillate from coal tar having an approximate distillation range of 100 deg C to 450 deg C (212 deg F to 842 deg F). Composed primarily of two to four membered condensed ring aromatic hydrocarbons, phenolic compounds, and aromatic nitrogen bases.' (NCI)). Note J is also considered applicable to this chemical.

The classification for CAS Nos. 8001-58-9 and 90640-86-1 are not subject to any notes. The lack of a note may be because the chemicals under these CAS Nos. might not be available in sufficiently purified forms. In the absence of further information, the addition of note M is not recommended

NICNAS HUMAN HEALTH TIER II ASSESSMENT FOR Coal Tar Distillates

http://www.nicnas.gov.au/chemical-information/imap-assessments/imap-group-assessment-report?assessment\_id=1442

#### SODIUM HYDROXIDE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Repeated exposures may produce severe ulceration.

# TAR, BROWN COAL & SODIUM HYDROXIDE

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

#### TAR, BROWN COAL & WATER

No significant acute toxicological data identified in literature search.

| Acute Toxicity                       | ✓        | Carcinogenicity          | ✓        |
|--------------------------------------|----------|--------------------------|----------|
| Skin Irritation/Corrosion            | ✓        | Reproductivity           | ✓        |
| Serious Eye<br>Damage/Irritation     | <b>*</b> | STOT - Single Exposure   | ×        |
| Respiratory or Skin<br>sensitisation | <b>~</b> | STOT - Repeated Exposure | <b>~</b> |
| Mutagenicity                         | ✓        | Aspiration Hazard        | ×        |

Legend:

- Data either not available or does not fill the criteria for classification - Data available to make classification

# **SECTION 12 Ecological information**

## Toxicity

|                  | Endpoint         | Test Duration (hr) | Species       | Value So               | ource          |
|------------------|------------------|--------------------|---------------|------------------------|----------------|
| Humus 26         | Not<br>Available | Not Available      | Not Available | Not No<br>Available Av | ot<br>vailable |
|                  | Endpoint         | Test Duration (hr) | Species       | Value So               | ource          |
| tar, brown coal  | Not<br>Available | Not Available      | Not Available | Not No<br>Available Av | ot<br>vailable |
|                  | Endpoint         | Test Duration (hr) | Species       | Value S                | Source         |
|                  | EC50             | 48h                | Crustacea     | 34.59-<br>47.13mg/l    | 4              |
| sodium hydroxide | EC50(ECx)        | 48h                | Crustacea     | 34.59-<br>47.13mg/l    | 4              |
|                  | LC50             | 96h                | Fish          | 144-<br>267mg/l 4      | 1              |
| water            | Endpoint         | Test Duration (hr) | Species       | Value So               | ource          |

Humus 26

Issue Date: 27/06/2024 Print Date: 08/07/2024

Not Not Not Not Available Not Available Available Available Available Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. DO NOT discharge into sewer or waterways

# Persistence and degradability

| Ingredient       | Persistence: Water/Soil | Persistence: Air |  |
|------------------|-------------------------|------------------|--|
| sodium hydroxide | LOW                     | LOW              |  |
| water            | LOW                     | LOW              |  |

## Bioaccumulative potential

| Ingredient       | Bioaccumulation        |
|------------------|------------------------|
| sodium hydroxide | LOW (LogKOW = -3.8796) |

# Mobility in soil

| Ingredient       | Mobility             |
|------------------|----------------------|
| sodium hydroxide | LOW (Log KOC = 14.3) |

# **SECTION 13 Disposal considerations**

### Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- Product / Packaging disposal
- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralise at an approved treatment plant.
- Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

# **SECTION 14 Transport information**

# Labels Required



**Marine Pollutant HAZCHEM** 

NO 2X

# Land transport (ADG)

| 1760                                                                     |                                                                                     |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
| CORROSIVE LIQUID, N.O.S. (contains tar, brown coal and sodium hydroxide) |                                                                                     |  |
| Class<br>Subsidiary Hazard                                               | 8 Not Applicable                                                                    |  |
| III.                                                                     |                                                                                     |  |
| Not Applicable                                                           |                                                                                     |  |
| Special provisions Limited quantity                                      | 223 274<br>5 L                                                                      |  |
|                                                                          | CORROSIVE LIQUID,  Class Subsidiary Hazard  III  Not Applicable  Special provisions |  |

Version No: 2.1 Humus 26

14.1. UN number 1760 14.2. UN proper shipping Corrosive liquid, n.o.s. \* (contains tar, brown coal and sodium hydroxide) name ICAO/IATA Class 14.3. Transport hazard ICAO / IATA Subsidiary Hazard Not Applicable class(es) ERG Code 8L 14.4. Packing group 14.5. Environmental hazard Not Applicable A3 A803 Special provisions Cargo Only Packing Instructions 856 Cargo Only Maximum Qty / Pack 60 L 14.6. Special precautions for Passenger and Cargo Packing Instructions 852 user Passenger and Cargo Maximum Qty / Pack 5 L Passenger and Cargo Limited Quantity Packing Instructions Y841 Passenger and Cargo Limited Maximum Qty / Pack 1 L

# Sea transport (IMDG-Code / GGVSee)

| 14.1. UN number                    | 1760                                                                     |                            |  |
|------------------------------------|--------------------------------------------------------------------------|----------------------------|--|
| 14.2. UN proper shipping name      | CORROSIVE LIQUID, N.O.S. (contains tar, brown coal and sodium hydroxide) |                            |  |
| 14.3. Transport hazard class(es)   | IMDG Class<br>IMDG Subsidiary Ha                                         | 8 szard Not Applicable     |  |
| 14.4. Packing group                |                                                                          |                            |  |
| 14.5 Environmental hazard          | Not Applicable                                                           |                            |  |
| 14.6. Special precautions for user | EMS Number Special provisions Limited Quantities                         | F-A, S-B<br>223 274<br>5 L |  |

# 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

# 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

| Product name     | Group         |
|------------------|---------------|
| tar, brown coal  | Not Available |
| sodium hydroxide | Not Available |
| water            | Not Available |

# 14.7.3. Transport in bulk in accordance with the IGC Code

| Product name     | Ship Type     |
|------------------|---------------|
| tar, brown coal  | Not Available |
| sodium hydroxide | Not Available |
| water            | Not Available |

# **SECTION 15 Regulatory information**

# Safety, health and environmental regulations / legislation specific for the substance or mixture

# tar, brown coal is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Chemical Footprint Project - Chemicals of High Concern List

# sodium hydroxide is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australian Inventory of Industrial Chemicals (AIIC)

# water is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

# **Additional Regulatory Information**

Not Applicable

# **National Inventory Status**

Issue Date: 27/06/2024

Print Date: 08/07/2024

Issue Date: 27/06/2024 Print Date: 08/07/2024 Humus 26

| National Inventory                                  | Status                                                                                                                                                                                         |  |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Australia - AIIC / Australia Non-<br>Industrial Use | No (tar, brown coal)                                                                                                                                                                           |  |
| Canada - DSL                                        | No (tar, brown coal)                                                                                                                                                                           |  |
| Canada - NDSL                                       | No (tar, brown coal; sodium hydroxide; water)                                                                                                                                                  |  |
| China - IECSC                                       | No (tar, brown coal)                                                                                                                                                                           |  |
| Europe - EINEC / ELINCS /<br>NLP                    | Yes                                                                                                                                                                                            |  |
| Japan - ENCS                                        | No (tar, brown coal)                                                                                                                                                                           |  |
| Korea - KECI                                        | Yes                                                                                                                                                                                            |  |
| New Zealand - NZIoC                                 | No (tar, brown coal)                                                                                                                                                                           |  |
| Philippines - PICCS                                 | No (tar, brown coal)                                                                                                                                                                           |  |
| USA - TSCA                                          | Yes                                                                                                                                                                                            |  |
| Taiwan - TCSI                                       | No (tar, brown coal)                                                                                                                                                                           |  |
| Mexico - INSQ                                       | No (tar, brown coal)                                                                                                                                                                           |  |
| Vietnam - NCI                                       | No (tar, brown coal)                                                                                                                                                                           |  |
| Russia - FBEPH                                      | No (tar, brown coal)                                                                                                                                                                           |  |
| Legend:                                             | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. |  |

### **SECTION 16 Other information**

| Revision Date | 27/06/2024 |
|---------------|------------|
| Initial Date  | 27/06/2024 |

#### Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be

### **Definitions and abbreviations**

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- ▶ IARC: International Agency for Research on Cancer
- ▶ ACGIH: American Conference of Governmental Industrial Hygienists
- ► STEL: Short Term Exposure Limit
- ► TEEL: Temporary Emergency Exposure Limit。
- ▶ IDLH: Immediately Dangerous to Life or Health Concentrations
- ES: Exposure Standard
- OSF: Odour Safety Factor
- NOAEL: No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- ▶ TLV: Threshold Limit Value
- LOD: Limit Of Detection
- ▶ OTV: Odour Threshold Value
- ▶ BCF: BioConcentration Factors
- BEI: Biological Exposure Index
- DNEL: Derived No-Effect Level
- ▶ PNEC: Predicted no-effect concentration
- ▶ AIIC: Australian Inventory of Industrial Chemicals
- DSL: Domestic Substances List
- NDSL: Non-Domestic Substances List
- IECSC: Inventory of Existing Chemical Substance in China
- ▶ EINECS: European INventory of Existing Commercial chemical Substances
- ▶ ELINCS: European List of Notified Chemical Substances
- NLP: No-Longer PolymersENCS: Existing and New Chemical Substances Inventory
- ▶ KECI: Korea Existing Chemicals Inventory
- NZIoC: New Zealand Inventory of Chemicals
- ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances
- ► TSCA: Toxic Substances Control Act
- TCSI: Taiwan Chemical Substance Inventory
- ▶ INSQ: Inventario Nacional de Sustancias Químicas
- NCI: National Chemical Inventory
- FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Page **14** of **14** 

Humus 26

Issue Date: **27/06/2024**Print Date: **08/07/2024**